If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8n^2+16n-89=0
a = 8; b = 16; c = -89;
Δ = b2-4ac
Δ = 162-4·8·(-89)
Δ = 3104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3104}=\sqrt{16*194}=\sqrt{16}*\sqrt{194}=4\sqrt{194}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{194}}{2*8}=\frac{-16-4\sqrt{194}}{16} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{194}}{2*8}=\frac{-16+4\sqrt{194}}{16} $
| u-1=13 | | 4r+2=17-r | | 5r+10=46-r | | 9k+2=17k-14 | | 180=y+15-2y-10 | | 2k+5=18k-27 | | 7s+38=12s+3 | | 16x+2=x+122 | | 8t-6=12t-50 | | 2(s+6)=10 | | 3x/2x-1=4/5 | | 8t-6=12t+3 | | p+7=4p–80 | | 15z-48=2z+30 | | 5y=7y-38 | | 6x^2+14x-24=0 | | 2w=4w-34 | | 12v=17v-40 | | 4c–6=7c–12 | | y+40=5y | | 7c–12=4c–6 | | 7c–12°=4c–6° | | 4t=8t-88 | | a+10=35 | | 4y+2y-18=72 | | 3(x+8)-x=2(5-x)+6 | | 11/2+3n=4/5n+12 | | 4v=v+45 | | 4m/6=8/24 | | 23=8u-7+2u | | 5x+1/2=3/2 | | p+23+p+45=11p-13 |